Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Language
Publication year range
1.
Bol. latinoam. Caribe plantas med. aromát ; 20(6): 558-574, nov. 2021. tab, ilus
Article in English | LILACS | ID: biblio-1369594

ABSTRACT

This review present Gingko biloba (GB) interactions, based on clinical and pre-clinical presentations. Literature was retrieved using databases; ScienceDirect, PubMed, Google scholar, Web of Science, Scopus etc. 14/45 interactions were found with clinical presentations. More interactions (80%) were reported with drugs followed by herbs (11.1%), and nutraceuticals (6.7%) with major mechanisms of interaction observed as; inhibition of Cytochrome metabolizing enzymes (44.4%) and platelet-activating factor (PAF) i.e. 15.6%. Major clinical features were; increased bleeding (eye, parietal), hematomas (subdural), and seizures as well as increased blood pressure, priapism, loss of infection/antiviral failure, and coma. Drugs with major interactions belonged to anti-platelet/anti-coagulant and NSAIDs. Synergistic effects were observed for GB vs herbs (except cannabis which showed rhabdomyolysis), foods, and nutraceuticals (except pyridoxine where neurotoxicity was seen). GB use should be monitored and the patient may seek proper advice from a healthcare professional.


Esta revisión presenta las interacciones de Gingko biloba (GB), basadas en presentaciones clínicas y preclínicas. La literatura se recuperó utilizando bases de datos; ScienceDirect, PubMed, Google Scholar, Web of Science, Scopus, etc. Se encontraron 14/45 interacciones con presentaciones clínicas. Se informaron más interacciones (80%) con fármacos seguidos de hierbas (11,1%) y nutracéuticos (6,7%) con los principales mecanismos de interacción observados como; inhibición de las enzimas metabolizadoras del citocromo (44,4%) y factor activador de plaquetas (PAF), es decir, 15,6%. Las principales características clínicas fueron; aumento de sangrado (ojo, parietal), hematomas (subdural) y convulsiones, así como aumento de la presión arterial, priapismo, pérdida de infección / insuficiencia antiviral y coma. Los fármacos con interacciones importantes pertenecían a los antiplaquetarios/anticoagulantes y los AINE. Se observaron efectos sinérgicos para GB frente a hierbas (excepto cannabis que mostró rabdomiólisis), alimentos y nutracéuticos (excepto piridoxina donde se observó neurotoxicidad). Se debe controlar el uso de GB y el paciente puede buscar el asesoramiento adecuado de un profesional de la salud.


Subject(s)
Plant Extracts/pharmacokinetics , Ginkgo biloba , Herb-Drug Interactions/physiology , Plant Extracts/adverse effects , Dietary Supplements
2.
Article in English | MEDLINE | ID: mdl-34239581

ABSTRACT

The development of green technology is creating great interest for researchers towards low-cost and environmentally friendly methods for the synthesis of nanoparticles. Copper oxide nanoparticles (CuO-NPs) attracted many researchers due to their electric, catalytic, optical, textile, photonic, monofluid, and pharmacological activities that depend on the shape and size of the nanoparticles. This investigation aims copper oxide nanoparticles synthesis using Aerva javanica plant leaf extract. Characterization of copper oxide nanoparticles synthesized by green route was performed by three different techniques: X-Ray Diffraction (XRD), Fourier Transform Infrared (FTIR) Spectroscopy, and Scanning Electron Microscopy (SEM). X-ray diffraction (XRD) reveals the crystalline morphology of CuO-NPs and the average crystal size obtained is 15 nm. SEM images showed the spherical nature of the particles and size is lying in the 15-23 nm range. FTIR analysis confirms the functional groups of active components present in the extract which are responsible for reducing and capping agents for the synthesis of CuO-NPs. The synthesized CuO-NPs were studied for their antimicrobial potential against different bacterial as well as fungal pathogens. The results indicated that CuO-NPs show maximum antimicrobial activities against all the selected bacterial and fungal pathogens. Antimicrobial activities of copper oxide nanoparticles were compared with standard drugs Norfloxacin and amphotericin B antibiotics. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of copper oxide nanoparticles were 128 µg/mL against all selected bacterial pathogens. MIC of fungus and minimum fungicidal concentration (MFC) of CuO-NPs were 160 µg/mL. Thus, CuO-NPs can be utilized as a broad-spectrum antimicrobial agent. The cytotoxic activity of the synthesized CuO-NPs suggested that toxicity was negligible at concentrations below 60 µg/mL.

SELECTION OF CITATIONS
SEARCH DETAIL